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Cluster expansions in the ( 2 + 1 ) ~  king model 

C J Hamer and A C Irving? 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, Canberra, ACT 2601, Australia 

Received 18  October 1983, in final form 16 December 1983 

Abstract. The cluster expansion methods of Nickel are applied to calculate high- 
temperature series for the vacuum energy and specific heat, the susceptibility, and the mass 
gap in the ( 2 +  I ) D  Ising model. Critical points and critical exponents are estimated for the 
square and triangular lattices. The results demonstrate universality with the 3D Ising 
model, within errors. Exact linked cluster expansions are formulated for the quantities 
above, and their convergence and scaling properties are investigated. 

1. Introduction 

Linked cluster expansions are the most efficient method presently known for generating 
perturbation series in Hamiltonian field theory. This method was originally proposed 
by Nickel (1980a), and applied to the ground-state properties of the ( 2 + 1 ) ~  Ising 
model in the low-temperature regime by Marland (1981). In a pair of recent papers, we 
have derived a connected diagram expansion (Hamer and Irving 1984) which is essentially 
equivalent to Nickel’s expansion; and applied the linked cluster method to Zz and U( 1) 
gauge theories in ( 2 +  i ) ~ ,  extending the approach to calculate the axial string tension as 
well as the ground-state energy (Irving and Hamer 1983a, hereafter referred to as I). 

In the present work, the approach is applied to the ( 2 + 1 ) ~  Ising model in the 
high-temperature regime. High-temperature series are calculated for the ground-state 
properties (specific heat and susceptibility) on square and triangular lattices. Another 
algorithm due to Nickel (1980a), this time involving both linked and unlinked clusters, 
is used to generate series for the mass gap. Using Pad6 approximant methods, the 
critical point parameters are estimated as x, = 0.20976 f 0.00015, y = 1.247 * 0.005 
and v = 0.64+ 0.02 for the triangular lattice, and x, = 0.3290 * 0.001, y = 1.257 * 0.01 
and v = 0.66 i 0.02 for the square lattice. These results are in good agreement with 
previous estimates (Marland 1981, Elliott et a1 1970, Pfeuty and Elliott 1971, Yanase 
e ta l l976 ,  Jullien e ta l  1978, Penson et a1 1979, Hamer 1983), and confirm universality 
of the indices y and v with the 3D Ising model, within errors. 

An exact linked cluster expansion (ELCE), which was proposed in I, is also applied 
to the model. In this approach, the contribution of each cluster is evaluated exactly, 
rather than being expanded as a power series. The method is extended to the case of 
the mass gap, and the convergence and scaling properties of the ELCE approximants 
are investigated. It is shown that quite good estimates of the critical parameters can 
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be extracted from the scaling behaviour of the ELCE approximants near the critical 
point, but that the method will usually be inferior to series (Gaunt and Guttmann 1974) 
and finite-lattice methods (Hamer 1983, Hamer and Barber 1981b) in this respect. 
The  method should prove useful, nevertheless, for confining gauge theories in the 
weak-coupling regime (Irving and Hamer 1983a, b), where finite-lattice calculations 
are hardly feasible, and series approximants break down. 

2. The vacuum energy and its derivatives 

The Hamiltonian of the ( 2 + 1 ) ~  Ising model may be written in the 'high-temperature' 
representation as (Fradkin and Susskind 1978):  

H = C ( 1 - a 3 ( m ) ) - x  C a , ( m ) c r l ( m + ~ , ) - h C a l ( m ) .  (2.1) 
m m4, m 

Here  the index m labels sites on a two-dimensional spatial lattice, and { k , }  are  its two 
unit base vectors, while the time variable is continuous. The  at are  Pauli matrices 
acting on a two-state spin variable at  each site, x is the coupling (analogous to  the  
inverse temperature p in the Euclidean formulation), and h is a magnetic field variable. 
We  are  interested in calculating the lowest two eigenvalues wo and w1 of the Hamiltonian 
(2.1). Quantities derived therefrom are  the ground-state energy per site, w 0 / N ,  where 
N is the number of sites of the lattice; the mass gap 

F ( x )  = w 1 ( x )  - w o ( x ) ;  

the 'specific heat' (Hamer and Barber 1981a) 

and the  magnetic susceptibility 

2.1. Linked cluster method 

In I we have discussed a linked cluster expansion, originally proposed by Nickel (1980a) 
and implemented by Marland (1981), which is applicable to the ground-state energy. 
The vacuum energy per site for an infinite lattice may be expressed in the form 

where the sum runs over all topologically distinct linked clusters (m ,  am)  consisting 
of m points arranged in configuration am, m = 1 , 2 , .  . . ,m. The number I, is an 
integer lattice constant (Domb 1960, 1974),  namely the number of ways in which the 
cluster (m,a,) can be embedded on the lattice, divided by the number of sites N. The  
quantity em," is the contribution made by a cluster (m,a,) t o  the vacuum energy, 
and is equivalent in perturbation theory (Hamer and Irving 1984) to the sum of all 
connected diagrams which span the cluster. 

is by an iterative method, 
starting f rom the smallest clusters and working upwards. The ground-state energy for 
any given cluster ( i ,  a , )  with free boundaries can be expressed, like that of the infinite 

The  most convenient way to  calculate the quantities 
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lattice, as a sum of contributions from each embedded sub-cluster, thus: 

where Cf;% is the embedding constant (Domb 1960, 1974), or number of ways in 
which the sub-cluster ( j ,  ai) can be embedded in (i, ai ) .  Efficient techniques have been 
developed previously (Hamer and Barber 1981a, Roomany and Wyld 1980, Hamer 
1983) for calculating the energies w ; " ~ ;  and then it is a simple matter to invert the 
relations (2.6) and calculate the E,.-, for progressively larger clusters. 

In I the calculation of the vacuum energy for the Z2 gauge model in ( 2 + 1 ) ~  was 
discussed, where the linked clusters consist of adjoining 'plaquettes', and the lattice 
constants required are low-temperature or 'strong' embedding constants (Domb 1960, 
1974)-that is, lattice embeddings in which two plaquettes are adjacent to each other 
are not allowed unless the two plaquettes are also adjacent in the original topology 
( j ,  ai). In the present case, the relevant topologies consist of clusters of sites joined 
by links (on which the spin-flip operators al( m ) r l (  m + pi) may act), and the lattice 
constants required are the high-temperature or 'weak' embedding constants. The 
calculation of these constants is discussed in appendix 1. 

2.2. Series results and analysis 

Our first use of the linked cluster method is to calculate series expansions for the 
vacuum energy in powers of x and h. Then the quantities o;j"c and E,,", are themselves 
expressed as series in x and h ;  and to calculate the susceptibility to order x', say, it 
is sufficient to consider clusters of m sites with m 6 M + 1, because a connected diagram 
of order M cannot span any larger cluster. 

Table 1. High-temperature series in x for the vacuum energy per site, w , / N ,  the susceptibil- 
ity x and the mass gap F of the ( 2 + 1 ) ~  king model. Coefficients at order M are  listed 
for the square and triangular lattices. 

M % / N  X F 

Square lattice 
0 0 
1 0 
2 -0.5 
3 0 
4 -0.468 75 
5 0 
6 -1.148 437 5 
7 0 

Triangular lattice 
0 0. 
1 0. 
2 -0.75 
3 -0.75 
4 -1.359 375 
5 -3.093 75 
6 -8.355 468 75 

1 
4 

13.5 
45 

144.843 75 
464.444 444 444 

1469.358 506 94 
4639.482 349 54 

1 
6 

166.5 
843.046 875 

4 218.416 66667 
20 941.023 003 5 

32.25 

2 
-4 
-2 
-3 
-4.5 

-11 
-20.507 8125 

2 
-6 
-6 

-10.5 
-31.5 
-98.531 25 

-346.710 9375 
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Expansions have been derived for the vacuum energy and susceptibility as functions 
of x, up to sixth order for the triangular lattice and seventh order for the square lattice. 
The results are shown in table 1. The calculation for the triangular lattice took 
approximately 20 minutes on a VAX 11/780, and was increasing by a factor of three 
or so for each order in x:  so one may contemplate extending these series by several 
more orders on a large mainframe computer. In fact, Yanase er a1 (1976) have 
previously calculated the susceptibility of the model (2.1) to seventh order, by a 
connected diagram method, but did not publish their series coefficients explicitly. For 
comparison, we may note that Nickel (1980b) has calculated the susceptibility for the 
3~ Euclidean Ising model to 0(pz1). In diagrammatic terms (Hamer and Irving 19841, 
one order in x is equivalent to two in p, but still our results are only equivalent to 
~ ( p ” )  or 0 ( p i 4 ) .  

These series have been analysed by the standard method of Pad6 approximants 
(Gaunt and Guttmann 1974). As is well known, the high-temperature susceptibility 
series is extremely smooth and well behaved, and one obtains accurate estimates of 
the critical parameters (table 2): 

x,=0.20976~0.00015 

y = 1.247 f 0.005 

for the triangular lattice, and 

x, = 0.3290 * 0.001 

y =  1.257*0.01 

(2.7) 

Table 2. Pade analysis of the series for D log ,y in the ( 2 +  i ) ~  Ising model. Listed are the 
position and residue (in parentheses) of the leading pole on the real axis in the [ N I M ]  
Pade approximant to this series. Our resulting estimates of the critical parameters are  
shown below. 

Square lattice 
1 0.297 3 (0.972) 0.327 9 (1.245) 
2 0.359 7 (1.721) 0.329 5 (1.264) 0.329 l (1 .258)  
3 0.328 9 (1.255) 

Estimate: x,=O.329Oi0.001, y =  1.257*0.01 

Triangular lattice 
1 0.211 l (1 .270)  0.21069 (1.264) 
2 0.209 61 (1.243) 0.209 75 (1.247) 0.209 76 (1.247) 
3 0.209 76 (1.247) 

Estimate: x,=0.209 76*0.000 15, y =  1.247*0.005 

for the square lattice. These results for the critical couplings x, are in close agreement 
with the ratio method estimates of Yanase et a1 (1976), namely 0.2098 and 0.3285 
for triangular and square lattices, respectively. The series for the specific heat are 
shorter, and the Pad6 results less stable, giving critical parameter estimates of very 
little value: we shall not present them here. 
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2.3. Exact  linked cluster expansion 

This technique (ELCE) was introduced in I. One still makes use of the linked cluster 
expansions (2.5) and (2.6),  but now the quantities w$"i and e,,", are calculated exactly, 
by matrix diagonalisation methods (Hamer and Barber 1981a, Roomany and Wyld 
1980) such as the Lanczos algorithm, and then the sum (2 .5)  is evaluated, including 
all clusters up to some convenient maximum size m = M. For any given coupling x 
and magnetic field h, one thus obtains a sequence of approximations to the vacuum 
energy per site, which we expect to converge to the exact bulk value in the limit 
M + 00. One can easily deduce corresponding values for the specific heat and suscepti- 
bility. 

Figures l ( a )  and ( b )  display some results of this sort for the specific heat and 
susceptibility of the triangular lattice, as a function of cut-off L, where L is the number 
of links in the cluster. Also shown for comparison is a high-order Pad6 approximant 
derived from the series expansions in table 1. It can be seen that the sequence of 

P I X I  

x 1x1 

0 .1 0.2 0.3 

2 /  
/ 

161 I 

0.1 0.2 0.3 
X 

Figure 1. Graphs of ( a )  the specific heat and ( b )  
the susceptibility of the ( 2 + 1 ) ~  king model on a 
triangular lattice. The full curve is the [ N / M ]  Pade 
approximant to the bulk limit, while the broken 
curves are ELCE approximants, labelled by their 
cut-off L. 

r 1 la1 

O'%% 1.3 

I 
0.4 0.2 0 

1 I1 

Figure 2. Scaling estimates of critical parameters for 
the ( 2 + 1 ) ~  king model on a triangular lattice, 
obtained from ELCE approximants to the susceptibil- 
ity. Figure 2 ( a )  shows the pseudo-critical points xf 
graphed against 1/L, where L is the cut-off; figure 
2 ( b )  shows the corresponding estimates of y. Each 
curve is labelled by the value chosen for w, the scaling 
dimension. 
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estimates for the susceptibility converges rapidly and smoothly towards the bulk limit, 
represented by the Pad6 approximant curve. There is clear evidence of a divergence 
in the susceptibility around x = 0.2. 

The convergence of the sequence for the specific heat is also rapid at small x, but 
is not so smooth. There is a noticeable ‘jump’ between the estimates for L = 2 and 
L = 3, for instance. The reason for this is not hard to ascertain. Most topologies (e.g. 
the open chains) consisting of L links only contribute to the series for the vacuum 
energy at order x 2 L  and higher; but at L = 3 we first meet a ‘closed’ topology, the 
triangle, which contributes at order x3 rather than x6, and so is unusually large?. This 
irregularity in the convergence of the ELCE estimates makes a scaling analysis very 
difficult: so we shall henceforth concentrate on the susceptibility results. 

The question we would now like to address is whether the scaling properties of 
the ELCE sequence with cut-off L can be used to estimate critical parameters, in a way 
similar to the finite-size scaling methods (Fisher 1970, Fisher and Barber 1972, Hamer 
and Barber 1981a, b) used for finite-lattice sequences. There is a problem here, in 
that the finite-lattice estimates scale in a well known way, while the ELCE estimates 
do not. According to the finite-size scaling hypothesis (Fisher 1970, Fisher and Barber 
1972, Hamer and Barber 1981a), the finite-lattice susceptibility at the critical point 
scales as 

where M is the linear dimension of the lattice. It is natural to assume that a similar 
form of scaling will be exhibited by the ELCE estimates, but the question arises as to 
what is the ‘linear dimension’ of a cluster of L links. The maximum dimension possible 
is M - L, for a straight chain of L links; and the minimum dimension possible is 
M - L”’, for a compact, ‘space-filling’ cluster in two space dimensions. We therefore 
expect the ELCE estimates to scale as 

- LYYl L. 

XL L - s  
(2.10) 

where y is some unknown index in the range i s  y s 1. 
In I, a method was outlined to handle this situation, using a phenomenological 

renormalisation (Nightingale 1976) technique. This is based on a Roomany-Wyld 
(1980) ‘beta function’ for the susceptibility, defined as follows: 

ln(xL’xL-l)) / [ I -  x(d/dx) l n ( ~ ~ ~ ~ - ~ ) ] .  
In( L / L  - 1) P L ( X )  = (-w + (2.11) 

This function has two important properties: 
(i) The numerator vanishes at the point x Z  such that 

XL(XZ)/XL-l(X2) = [ L / ( L -  I)]”. (2.12) 

Then if w is adjusted to match the proper scaling dimension y y / v  (cf (2.10)), the 
sequence of values {x?} will converge to the critical point x, as L + 00. This will also 
hold true, however, for a broad range of values about y y /  v. We may therefore treat 
w as an adjustable parameter. 

t A similar anomaly is encountered in ( 3 +  I ) D  gauge theories, due to the closed, cubic topology (Irving and 
Hamer 1983a, b). 
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(ii) It is easy to check that if 

X - (Xc-  X)y, (2.13) 

then the asymptotic form of the beta function in the vicinity of the critical point is 

P - w(x,--x)/2xcY. (2.14) 

Thus the slope of the finite-cluster beta function PL at the pseudo-critical point xT 
may be used to provide an estimate of the true critical index y; and the sequence of 
these estimates should converge to the exact value as L + 03. 

Figures 2(a)  and ( b )  display some results based on these ideas. In figure 2(a)  the 
pseudo-critical points xT are plotted as a function of cluster size L for various values 
of w. Each sequence can be quite well fitted by a straight line in the variable 1/L, 
and extrapolated to the limit L+co to give a reasonably consistent estimate of the 
bulk critical point. Thus we find 

xc = 0.20910.001. (2.15) 

The sequence converges most rapidly for w = 1.24, so we estimate 

y y / v =  1.2410.01. (2.16) 

Figure 2(b) shows estimates of the critical index y obtained from the slope of PL 
at x: via (2.14), as a function of L for various values of w. Choosing the ‘correct’ 
value w = 1.24 and extrapolating to the limit L +  03 via the curve illustrated, we arrive 
at a result 

y =  1.23*0.01. (2.17) 

The close similarity between the values (2.16) and (2.17) is presumably fortuitous. 
A similar analysis of the square lattice data gives 

x,=0.32810.001, (2.18) 

yy/u= 1.2610.01, (2.19) 

y =  1.2410.01 (2.20) 

3. The mass gap 

A true linked cluster expansion for the mass gap does not appear to be possible. A 
connected diagram expansion has been conjectured (Hamer and Irving 1984) for the 
mass gap of the bulk system, but end effects spoil the derivation for a finite lattice or 
finite cluster with free boundaries, and so the linked cluster expansion does not go 
through. But Nickel (1980a) has proposed another algorithm, which might be called 
an ‘overlapping cluster’ expansion, which is almost equally fast and efficient. 

3.1. Cluster expansion for the mass gap 

Nickel’s argument (1980a) runs as follows. The standard perturbation theory 
expression for the energy of the first excited state may be written 

Vll) q ( x )  =2+-(1~V/l)+-(l)V- 
N N w , - H  
1 1 P 

(3.1) 
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where 

Here V is the perturbation operator x Em.;, u I ( m ) v l ( m  and P is a projection 
operator onto all states excepr those with one overturned spin. Now since the mass 
gap F = w 1  - wo is intensive, while wo is extensive, the contributions to F can only 
come from parts of the matrix elements that are proportional to N. We may therefore 
replace w ,  by F in the denominator w1 - H and write?: 

F = 2 + ( l /N)(  11 VIl)+ (1/ N)A, 

P 
F - H  A = (11 v- V l l ) / l i n e a r  in N *  

Now an iterative perturbation expansion for the quantity A can be written down in 
the usual manner, by expanding in powers of V: 

where & = E m  (1 -m3(m)) .  Each term in this expression can be represented by a 
diagram, and each diagram spans a set of sites and links on the lattice, which may 
form a single linked cluster, or else a number of disconnected clusters (figure 3). A 
cluster expansion can thus be written down for A, very similar in form to that of § 2 :  

and 

(3.7) 

Here (m,Pm) denotes a set of m sites arranged in a topology Pm, which may be 
connected or disconnected; is the contribution from all diagrams which span 
that topology, and Am,Pm is the total of all diagrams which can be drawn on the set 
(m, P m ) .  The e:$; are embedding constants for topologies ( j ,  P I )  within ( i ,  Pi), and 
lk,Pm is the O(N) term in the overall lattice constant for topology (m,Pm). We discuss 
in appendix 2 how these lattice constants and embedding constants may be calculated. 

The algorithm then proceeds very much as in § 2 .  The quantity A+, can be calculated 
by a slight variation of the standard eigenvalue methods for any given cluster: we shall 
say a little more about this in § 3.3. Having found the one can invert (3.7) to 
find the and hence calculate the overall mass gap from (3.3) and (3.6). The 
algorithm is just as fast and efficient as that of 9 2 for the ground-state energy, except 
that the list of topologies is longer by a factor of two or three for any given cut-off L. 

3.2. Series results and analysis 

The resulting series expansions in x for the mass gap on the square and triangular 
lattices are exhibited to order x6 in table 1 .  This calculation took approximately three 

+This  manoeuvre may need further explanation. We assume that the Hamiltonian H is normalised so that 
the zeroth-order term in wo vanishes, so that wo is O ( N x 2 ) .  If one then subtracts wo from the denominator 
in (3.1), and expands in powers of x, then the only terms in A which are changed are O ( N 2 )  and higher. 
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Table 3. Pade analysis of the series for D log F in the ( 2 +  i ) ~  Ising model. Notation as 
in table 2. 

Square lattice 
1 0.324 (0.63) 0.329 (0.66) 
2 0.336 (0.70) 0.330 (0.66) 0.330 (0.66) 
3 0.330 (0.66) 

Estimate: x,=0.330*0.001, U =0.66*0.02 

Triangular lattice 
1 0.215 (0.69) 0.211 (0.66) 
2 0.209 (0.64) 0.210 (0.65) 0.209 (0.62) 
3 0.210 (0.65) 

Estimate: x,=O.210*0.001, U =0.64*0.02 

minutes on the VAX (excluding the generation of the list of topologies required), and 
was increasing by a factor of two or so at each order. The first four coefficients for 
the square lattice had previously been calculated by Pfeuty and Elliott (1971). 

The results of a Pad6 approximant analysis of these series are shown in table 3. 
Hence we obtain estimates of the critical parameters: 

v = 0.64 * 0.02 x,  = 0.210 * 0.001, (3.8) 

for the triangular lattice, and 

x,=0.330*0.001, v = 0.66 * 0.02 (3.9) 

for the square lattice. These results for the critical points are consistent with those of 
§ 2.2, but not so accurate. 

3.3. Exact cluster expansions 

As in § 2.3, one can now set out to generate an exact cluster expansion for the mass 
gap (which for convenience we shall again denote as ELCE, although the adjective 
'linked' is inappropriate here). The strategy is the same as in § 2.3: one calculates 
exact expressions for the quantities Am,Pm by matrix diagonalisation methods (Hamer 
and Barber 1981a, Roomany and Wyld 1980), for all clusters up to some convenient 
maximum size m = M, and then (3.6) and (3.7) are used to obtain an approximation 
to the bulk mass gap A. 

The difficulty with this program is that the matrix to be diagonalised itself has to 
be generated in an iterative or self-consistent fashion for each cluster. Let Dm,P,,, be 
the matrix whose lowest eigenvalue is Am,B,, , ;  then Dm,Pf,, has a block matrix form: 

(3.10) 

with notation as above, which is almost the same as the matrix H represented on the 
basis of states (in the odd spin-flip sector) belonging to the topology (m,  p m ) ,  except 
for the following differences. First, the entry (11011) has been set to zero, which merely 
eliminates terms through O( x)  from consideration. Secondly, all the single spin-flip 
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states have been summed into the state 11) as in (3.2), which is not normalised to  unity. 
Finally, the diagonal piece Ho of the Hamiltonian has been replaced by H & ,  to  be 
defined below. If Ho were used, the usual iterative expansion for Am,Pv,, would read: 

(3.11) 

which is not what we want. To produce the expansion (3.5) we must ‘renormalise’ 
Ho to a new diagonal matrix given by 

(3.12) 

(3.13) 

The values of the overall mass gap F and the cluster contribution Am,pm, which make 
up the shift s must then be calculated in an iterative or self-consistent fashion. 

Figure 3. Examples of clusters which contribute to the expansion (3.6): ( a )  connected; 
( b ) ,  ( c )  disconnected. A cross denotes sites which may contain the initial spin excitation 
(NB a component consisting of a single site, as in ( b ) .  may only occur once and must 
contain the initial spin excitation, otherwise it cannot contribute to the high-temperature 
expansion). 

A simple example may be useful at this point. Consider the cluster shown in figure 
3(b). In this particular case, there is only one component to  the initial state, ll)= 
I -  + +), where + denotes an up spin and - denotes a flipped spin (see footnote to  
figure 3). The only excited state is 12) = 1 - - -), and the matrix D can be represented on 
this basis as: 

(3.14) 

whose eigenvalue is simply: 

4 x h ) i  = - x 2 / ( 6 - F ) .  (3.15) 

The series expansion of 0 3.2 is simple to perform: at each order, one inserts the 
result obtained for F at the previous order into the perturbation series denominators, 
such as that in (3.15), in the standard iterative fashion. The exact cluster expansion 
is a little more difficult: one must modify the diagonal entries of the matrix D for each 
cluster, such as that in (3.14), in a self-consistent way in order to estimate Am,pm for 
each cluster plus the overall mass gap F. We have chosen to d o  this by the following 
algorithm. 

(i) Choose a spread of five equally spaced estimates of the mass gap F. 
(ii) For each cluster, choose a spread of five equally spaced estimates of the shift 

s in (3.12), and calculate the eigenvalue AmqPm of the matrix (3.10) corresponding t o  
each such value of s. 
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(iii) For each value of F chosen at (i), find the value of Am,Pm for which s = Am,,m - F 
by interpolation between the results calculated at (ii). 

(iv) Inserting these values of Am,Pm into equations (3.3)-(3.7), obtain an output 
value for the mass gapF. Find the point at which the input value of F is consistent 
with the output value by interpolation between the five values chosen at (i). 

(v)  Iterate the procedure once more, with a smaller spread of estimates, to check 
the stability and accuracy of the result. 

1 
0 1  X 0 2  

0' 

Figure 4. The mass gap of the ( Z + I ) D  Ising model on a triangular lattice. The full curve 
is a Pade approximant, and the broken curves are  ELCE estimates, as in figure 1. 

This procedure has been applied to the Ising model mass gap in ( I +  I )D  and ( 2 f i ) ~ .  

Figure 4 displays the results for the ( 2 +  i ) ~  model on the triangular lattice, as compared 
with the [3/3] Pad6 approximant to the mass gap. It can be seen that the ELCE 

approximants converge rapidly and smoothly to the bulk limit for x < x, and cut-off 
L s 4. For L 2 5, the convergence begins to look more irregular, but we attribute this 
to the fact that our list of topologies was incomplete for L 3 4, containing only those 
topologies needed to give series correct to O(x6) .  From the results for L S 4 ,  the 
convergence appears to be linear in L for small x, as one might expect since the ELCE 
result coincides with the series expansion up to O(xL) .  At the critical point, the ELCE 

estimates appear to converge approximately as L - O . ~ .  

One might well ask why we have bothered to introduce these ELCE approximations 
at all, since the series Pad6 approximants provide as good or better estimates of the 
mass gap in the high-temperature region. The reason is that the ELCE is a topological 
expansion, rather than a perturbative one, and might be expected to converge to the 
correct physical limit at all couplings. The series Pad6 approximants are likely to prove 
rather unreliable in the weak coupling region of confining gauge theories, because of 
the proximity of the essential singularity at the continuum limit (Hamer 1979): it is 
our hope that the ELCE approximants will be more useful there. In the present work, 
our aim has been simply to show how such approximants for the mass gap may be 
calculated, and to show that they converge to the correct bulk limit. 

A possible snag in this approach is that for some couplings there may not exist any 
real, self-consistent solutions for {Am,Pm}  and F. We have found possible evidence of 
this phenomenon for the ( i + i ) ~  Ising model beyond the critical coupling x = 1. It 
remains to be seen whether this will become a problem for the gauge theory case. 
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4. Discussion and conclusions 

In this paper, some finite cluster algorithms due to Nickel (1980a) have been applied 
to the ( 2 + i ) ~  Ising model in the high-temperature regime. These methods are the 
most efficient that we know for generating perturbation series in Hamiltonian field 
theory. High-temperature series have been calculated for the vacuum energy and 
specific heat, the susceptibility, and the mass gap, on both square and triangular lattices 
in ( 2 + 1 ) ~ .  

Pad6 analysis of these series resulted in the following estimates of the critical 
parameters: for the triangular lattice, 

x, = 0.209 76 * 0.000 15, (4.1) 

x, = 0.3290 * 0.001, y =  1.257*0.01, v = 0.66 * 0.02. (4.2) 

y = 1.247 * 0.005, v = 0.64 * 0.02, 

and for the square lattice, 

These estimates for the critical point are in close agreement with those of Yanase et 
a1 (1976), who had earlier calculated the susceptibility series. The results agree within 
errors with other analyses, e.g. 

x,=0.329*0.001, 7’ = 1.25 * 0.02, (4.3) 

x,  = 0.2098 * 0.0002, y ‘ =  1.250*0.012, (4.4) 

for the square lattice, and 

for the triangular lattice, from a low-temperature series analysis (Marland 1981), and 

x,=0.329*0.001, v = 0.635 * 0.005, (4.5) 

from a finite-lattice study on the square lattice (Hamer 1983). The results demonstrate, 
within errors, the universality of the critical indices y and v for the square and triangular 
lattices in ( 2 +  i ) ~ ,  and for the 3~ Ising model. The estimates are actually a little high 
compared with the accepted values for the 3~ model (Le Guillou and Zinn-Justin 
1980, Baker et a1 1978) 

y = 1.241 *0.002, v =0.630*0.0015. (4.6) 

But this is usually the case for a standard high-temperature series analysis, and has 
been attributed to the influence of confluent singularities at the critical point (Nickel 
1980b, Zinn-Justin 1981, Chen et af 1982). We have not made any attempt here to 
take these singularities into account. Our series could quite easily be extended by 
several more terms on a large main-frame computer, and it would then be worthwhile 
to perform a more careful analysis. 

An exact linked cluster expansion (ELCE) based on Nickel’s algorithms has also 
been studied. In this approach (Irving and Hamer 1983a), the contribution of each 
cluster topology is evaluated exactly by matrix techniques, rather than being expanded 
as a power series. We have demonstrated how to calculate ELCE approximants both 
for extensive quantities such as the susceptibility and for the mass gap, and shown that 
they converge to the correct bulk limit. 

A study was also made of the scaling properties of the ELCE approximants to the 
susceptibility. As a function of the cut-off L (equal to the maximum number of links 
in the cluster), the ELCE approximants were found to converge linearly (i.e. like e-cL) 
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to the finite bulk limit for x < x,. At the critical point xc,  the approximants scaled as 

X L - L w  (4.7) 

with 
1.24* 0.01 
1.2610.01 for the square lattice. 

for the triangular lattice, 
(4.8) 

A phenomenological renormalisation (Nightingale 1976, Roomany and Wyld 1980) 
technique, first introduced in I, was used to estimate the critical parameters: 

x,  = 0.209 * 0.001, y =  1.23*0.01, for the triangular lattice, (4.9) 

and 
xc= 0.328k0.001, y = 1.24k0.01, for the square lattice. (4.10) 

These results agree well with the series values (4.1) and (4.2), but are somewhat less 
accurate. By analogy with the finite-size scaling properties of square lattices (Fisher 
1970, Fisher and Barber 1972, Hamer and Barber 1981a), one might write 

w = y y l v ,  (4.11) 

whence one finds the scaling index y: 

0.63 kO.01 triangular lattice, 
Y = {  0.64 * 0.01 square lattice. 

(4.12) 

But the significance of this index is not yet clear. From (4.12), it appears universal 
between different lattice structures; but it is probably not the same for different 
quantities, such as the susceptibility and the mass gap. 

The characteristics of the ELCE approximants (Irving and Hamer 1983a) are 
intermediate between those of series (e.g. PadC) approximants and finite-lattice 
approximants (Hamer and Barber 1981a, b, Hamer 1983) as follows. 

(i) The ELCE expansion is a topological, non-perturbative one, and so may be 
expected to converge to  the correct physical result at all couplings, like the finite-lattice 
approximants. We have checked this for the vacuum energy in the present case (see 
alsoI), although the results are not shown here. The case of the mass gap is more 
problematical. 

(ii) The ELCE expansion is biased towards one end of the coupling range, however, 
depending whether one chooses to base it on the high-temperature or low-temperature 
representation. Within the radius of convergence of the corresponding series, the ELCE 

approximants converge linearly to the bulk limit. 
(iii) The scaling behaviour of the ELCE approximants at a critical point is qualita- 

tively similar to that of the finite-lattice approximants. We have shown that the results 
may be analysed to provide quite good estimates of the critical parameters, in a 
favourable case. But in general one finds the ELCE approximants to be somewhat 
‘noisy’, like the series coefficients, so that a scaling analysis will only work well when 
the ratio method (Gaunt and Guttmann 1974) also works well for the series coefficients. 
Thus an ELCE analysis of critical behaviour will in general be inferior to a series Pad6 
analysis or a finite-lattice scaling analysis. 

(iv) The advantage of the ELCE method is that it is practicable for models in three 
or four dimensions where exact finite-lattice methods are not feasible, and series 
methods break down, such as in the weak-coupling regime of a confining gauge theory. 



1662 C J Hamer and A C Irving 

It is in these latter regions that we expect the method to become useful: some initial 
applications have already been made to the Z2 gauge model (Irving and Hamer 1983a) 
in ( 2 + 1 ) ~ ,  and the U(1) gauge model (Irving and Hamer 1983b) in ( 2 t l ) D  and (3+1)D.  
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Appendix 1. Calculation of high-temperature embedding constants 

The calculation of high-temperature, or ‘weak’, embedding constants has been quite 
fully discussed by Domb (1960, 1974) and Martin (1974). The topologies we are 
interested in consist of a set of points connected by bonds into a single linked cluster. 
They are embedded on the lattice so that points of the cluster correspond to sites of 
the lattice, and bonds correspond to links between neighbouring sites; and in the 
high-temperature (weak-embedding) case there are no restrictions on the embeddings 
except that points of the cluster cannot fall on top of each other. 

The method we used to generate the embedding constants is a modification of that 
used in I €or the low-temperature case. 

(i) Linked clusters were generated on the lattice by the canonical labelling method 
of Martin (1974). Each cluster topology was characterised by an ‘adjacency matrix’ 
specifying all the links between neighbouring sites of the cluster. 

(ii) Each cluster was placed in a class according to its topology, by the methods 
outlined in I. The number of clusters in each class gives the ‘strong embedding’ lattice 
constant for that topology, since at this stage each pair of neighbouring points is 
necessarily connected by a bond. 

(iii) A representative of each topology class was ‘stripped’ to determine the sub- 
clusters it contains; by this means the embedding constants Cf$; are obtained. In I, 
the stripping was done by systematically deleting poinfs of the cluster, and looking for 
connected sub-clusters. In the present case, the stripping is done by deleting bonds 
in a similar fashion, to give the high-temperature embedding constants. If a connected 
sub-cluster is found with the same number of points as the original cluster, but with 
fewer bonds, then this configuration is added to the lattice constant lj,a, of the sub- 
cluster. Thus the lattice constants are converted to ‘weak embedding’ lattice constants, 
where neighbouring points are not necessarily connected by bonds. 

We have checked that the resulting lattice constants agree with those given by 
Domb (1960), appendix 111. The calculation of a list of topologies and their lattice 
constants for clusters through seven sites on the triangular lattice took approximately 
20 minutes on the VAX 11/780, to generate 51 topologies with number of bonds 
L S 6. It may well be possible to streamline this process further. 

Appendix 2. Calculation of weak embedding constants for disconnected clusters 

To determine the mass gap, we need weak embedding constants for unlinked clusters 
(Domb 1960) as well as linked ones, such as those shown in figure 3. This calculation 
was performed by a further modification of the program outlined in appendix 1. 
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Figure 5. A typical disconnected topology (at left), and the topologies which may be 
formed when its components overlap (at right). 

( i )  Linked clusters were generated and classified by topology as in appendix 1. 
(ii) A representative member of each topology class (i, a i )  was systematically 

stripped of its bonds as in (iii) of appendix 1. The embedding constants C::,”; and weak 
lattice constants l j ,+,  were calculated as before for the linked clusters. At this stage, a 
list was kept of the ‘stripped’ adjacency matrices corresponding to each linked sub- 
cluster ( j ,  a,). 

(iii) Next, all possible combinations of linked sub-clusters within the topology (i, a , )  
were tested (up to appropriate cut-offs on size and number of sub-clusters). Each 
combination corresponds to a disconnected topology, which we shall denote ( k ,  P k ) .  

Tests were performed for the following conditions: 
(a) None of the sub-clusters overlap, in which case the configuration must be 

included in the embedding constant C:;,. 
(b) The sub-clusters overlap to span the entire original cluster (i, a , ) ,  in which case 

the configuration contributes to an ‘overlap constant’ Of;;, defined as the 
number of ways the topology ( k ,  P k )  can overlap so as to span (i, ai). This 
will be used below to calculate the lattice constants. 

(iv) Finally, each disconnected topology was tested as a ‘parent’ of other discon- 
nected sub-topologies. Combining the embedding constants Cf;;, for each linked 
component of (m ,  P m ) ,  it is possible to deduce the overall embedding constant C$ym 
for disconnected topologies within other disconnected topologies. Similarly, one may 
deduce the overlap constant 0;18:- from those of the linked components. From this 
information, one can calculate the overall lattice constant for each disconnected 
topology, according to the formulat 

(A2.1) 

where now the sum includes both connected and disconnected topologies ( m ,  P m ) .  We 
refer to Domb (1960) for a discussion of these constants. One explicit example may 
help to make things clear. Consider the topology shown at the left of figure 5 .  
Contributions to its lattice constant (i.e. the coefficient of the order N term in its 
lattice embedding constant) come from configurations where the two components 
overlap to form the four topologies shown at right. Evaluating formula (A2.1), we 
obtain: 

lattice constant = - 69 x 2-  2 x 3 -20 x 3- 15 x 2 

= -234 (A2.2) 
where the contributions at the first line are in order of the four topologies in figure 5, 
and these lattice constants are for a triangular lattice. 

We have checked that our lattice constants agree with those of Domb (1960), 
appendix 111, table C. For the mass gap calculation to O(x6) on the triangular lattice, 
a list of 160 topologies was required, whose generation took 20-30 minutes on the VAX. 

i Depending on conventions, there may be some extra symmetry factors involved here. We shall leave the 
determined reader to figure these out for himself. 
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